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On the Entropy of Nonequilibrium States 
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A definition originally proposed by H. S. Green is used to calculate the entropy 
of nonequilibrium steady states. This definition provides a well-defined coarse 
graining of the entropy. Although the dimension of the phase space accessible 
to nonequilibrium steady states is less than the ostensible dimension of that 
space, the Green entropy is computed from within the accessible phase space, 
thereby avoiding the divergences inherent in the fine-grained entropy. It is 
shown that the Green entropy is a maximum at equilibrium and that away from 
equilibrium, the thermodynamic temperature computed from the Green entropy 
is different from the kinetic temperature. 
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1. I N T R O D U C T I O N  

Since the founda t ion  of s tat is t ical  mechanics  there has been a cont inuing  
deba te  over  the microscopic  fo rmula t ion  of the en t ropy  for nonequi l ib r ium 
states. G i b b s  (1) no ted  that  for any  H a m i l t o n i a n  system, even one subject  to 
an external  field, the en t ropy  S, defined as it is in equi l ibr ium stat is t ical  
mechanics ,  

s(t) - @ .  f drf(r, t)ln(f(F, t)) (1) 

is a cons tan t  of the mot ion .  G ibbs  recognized this difficulty and  par t ia l ly  
resolved the p r o b l e m  by compu t ing  a coarse-gra ined  ent ropy,  which he 
showed satisfied a general ized H- theorem.  (1) In the years  since no one has 
been able to show that  as the character is t ic  lengths for the coarse  gra in ing  
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tend to zero, the coarse-grained entropy tends to a limit which is different 
from the fine-grained value. Neither, as far as I know, has anyone 
succeeded in deriving a useful connection between the coarse-grained 
entropy and irreversible thermodynamics. 

Recently simulation-inspired studies of nonequilibrium steady states 
have only compounded the difficulties. In 1985, I showed (2) that for systems 
subject to a dissipative external field Fe and thermostatted using any of the 
time-reversible thermostats used in computer simulations, the fine-grained 
entropy diverges to - oo at long time and that the rate of change of the 
system entropy in a nonequitibrium steady state is 

S= -3Nk.(~(t)  ) (2) 

where ~ is related to the rate at which internal energy Ho is removed from 
the system by the thermostat and to the peculiar kinetic energy of the 
system K, 

0~ = --/s (3) 

The dissipative flux is defined by the adiabatic derivative of the internal 
energy as (dHo/dt) ad- - J F  e. In a steady state <e> is equal to 
LF2e/(2<K>), where L is the transport coefficient defined by the 
constitutive relation J-=-L(Fe)F e .  In accord with the second law of 
thermodynamics, L is always observed to be positive and therefore, by 
Eq. (2), the entropy decreases linearly in time without limit. This occurs in 
the linear regime close to equilibrium, where lim(Fe ~ 0) L(Fe) = L(0), and 
in the nonlinear regime far from equilibrium. 

This is not in accord with intuition or linear irreversible thermo- 
dynamics. Close to equilibrium we expect that the system entropy is 
constant and equal to its equilibrium value. This is after all the postulate 
of local thermodynamic equilibrium. For nonequilibrium steady states, far 
from equilibrium we expect that the N-particle distribution function will 
tend to a time independent steady-state distribution fss and that the steady- 
state entropy for systems far from equilibrium should be given by Eq. (1) 
evaluated for fss. The reason for expecting the steady-state nonequilibrium 
distribution function to converge to a time-independent function fss is that 
for steady states, all the moments of the distribution and all phase averages 
taken with respect to the steady state distribution are, by definition, time 
independent. It is important to keep in mind, however, that not all thermo- 
statted nonequilibrium systems are steady-state systems. 

Recent numerical studies of small nonequilibrium systems have gone 
some way toward explaining the entropy divergence in nonequilibrium 
steady states. Beginning with simulations of thermostatted systems of just 
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two particles subject to a dissipative external field, M o r a n  et aI. (3) and 
Morris/4) have produced convincing evidence that f~s(F) is singular and 
fractal. In extending their simulations to 8- and 32-particle systems, there 
appears to be no reason to doub t  that  this fractal nature persists in the 
large-system limit. (5) Fur thermore,  they (4) have shown that  the dimension 
of the phase space which is accessible to nonequil ibrium steady states is less 
than the ostensible dimension of the full phase space ( 2 d N  for N-particle 
systems in d Cartesian dimensions). 

This was implicit in my earlier work (z) when I showed that the streaming 
density of the phase space distribution function increases at a constant  
average rate in the steady state, 

ldf  
=- A = dN~  (4) 

fdt  

I called A the phase space compression factor. Figure 1 is a graph of the 
configurational phase space for a two-particle system under  shear. We see 

Fig. 1. The pair distribution function for the two-particle soft-disk fluid at a reduced strain 
rate of 1.250, a total kinetic energy of 0.25, and a density of 0.4. The run length is 20 million 
timesteps. One can clearly see the filamentary structure characteristic of a fractal distribution. 
This distribution is extremely sensitive to applied conditions. The volume of accessible phase 
space for this system is less than the ostensible dimension 3. 
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that the steady-state distribution function has contracted onto a strange 
attractor of dimension lower than three. The structure is extremely fila- 
mentary and is exquisitely sensitive to the precise values of the density, 
strain rate, etc., but is entirely independent of the initial starting point in 
phase space. The sensitivity of this distribution function to applied condi- 
tions is evidenced by the fact that the location of the filaments changes 
appreciably when the calculation is performed in single rather than double- 
precision arithmetic. 

Since the dimension of the accessible phase space decreases to less 
than the ostensible 2dN dimensions, the volume of the accessible phase 
space as measured from the ostensible space is zero (e.g., the three-dimen- 
sional volume of the surface of a three-sphere is zero.) The entropy of a 
system is proportional to the logarithm of the accessible phase volume. 
Since that volume as determined from the ostensible phase space is zero, 
the entropy will diverge to negative infinity. These simple observations 
explain the divergence of entropy as computed in the ostensible space. 
Presumably the thermodynamic entropy should be arrived at by inte- 
grating (1) over the accessible phase space only. This would remove the 
apparent divergence. However, the determination of the topology of the 
phase space which is accessible to nonequilibrium steady states is 
exceedingly complex. Even the dimension of the accessible space is only 
known approximately. Such a program for the calculation of the non- 
equilibrium entropy would therefore appear quite hopeless. 

The fine-grained entropy as computed from the ostensible phase space 
dimension has a number of further difficulties. First, if a system such as the 
one depicted in Fig. 1 is meant no represent argon, it is violation of the 
Heisenberg uncertainty principle. The uncertainty principle puts an 
absolute limit on the degree to which a distribution function can be fractal. 
There is a lower limit, imposed by Planck's constant, to the scale of 
features that can be found in phase space. Second, the extreme sensitivity 
of the filaments depicted in Fig. 1 implies extreme sensitivity to external 
perturbations. The finer the length scale of the phase space structures, the 
more sensitive those structures will be to external perturbations. If the 
distribution function is fractal, there is no limit to the smallness of the 
space structures and therefore no limit to the sensitivity of the full distribu- 
tion function to uncontrolled external perturbations. In an experiment, 
averaging over an ensemble of possible external fluctuations would of 
course "wash out" the fine structure below a critical length scale. The 
precise cutoff value would be determined by the amplitude and spectrum of 
the external fluctuations. This "washing out" of fine structure provides an 
Ansatz for the computation of the entropy of nonequilibrium steady states. 

In this paper I will describe a systematic method for computing the 
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coarse-grained entropy of nonequilibrium steady states. The coarse 
graining is introduced by decomposing the Gibbs entropy (1) into terms 
arising from the partial distribution functions involving correlations of 
successive numbers of particles. I test the expansion at equilibrium and find 
that for densities less than ~ 75 % of the freezing density, the singlet and 
pair contributions to the entropy appear to be accurate to more than 

90 %. If the expansion is carried out to order N, then for an N-particle 
system the results will be identical to the fine-grained Gibbs entropy. Away 
from equilibrium the expansion will consist of a series of finite terms until 
the dimension of the partial distribution function exceeds the dimension of 
the accessible phase space. Once this occurs, all succeeding terms will be 
infinite. The method yields finite terms below this dimension because all the 
lower-dimensional integrals are carried out in the accessible phase space. 

I will show that away from equilibrium the method yields a finite 
entropy which is observed to be less than that of the equilibrium state 
characterized by the same density and internal energy. Away from equi- 
librium the thermodynamic temperature is not  given by the equipartition 
kinetic value. Neither is the thermodynamic pressure given by the average 
diagonal element of the pressure tensor. The thermodynamic pressure is 
instead, within statistical uncertainties, equal to the smallest eigenvalue of 
the pressure tensor. Thus, the thermodynamic pressure could be related to 
the min imum work required to cause a virtual density change. 

2. GREEN'S E X P A N S I O N  FOR THE ENTROPY 

In 1952, Green (6/ used Kirkwoods's factorization (7) of the N-particle 
distribution function to write an expansion for the entropy. We define 
z-functions in an infinite hierarchy, 

in f]i) ~ Z]~) 

In f(a U) =- z~O) + z~ 0 + z] y) (5) 

1o .<0k  + + + + z ?  + z J' + 
x x J 3  - - , ~ 3  

The various f-functions are the partial t, 2, 3,...-body distribution functions. 
Green showed that Gibbs' fine-grained entropy can be written as an infinite 
series, 
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Using Eq. (5), one can easily show that the entropy per particle is given by 
the series 

S kBfdp~A(p~)lnf~(p~) 
N p 

ff ( s 2' kB dE 1 dFef2(F1 F2) in ~ !  + ... (7) 
2N \ J 1  J 1  / 

In deriving this equation, we have assumed that the fluid is homogeneous. 
This enabled a spatial integration to be performed in the first term. This 
equation is valid away from equilibrium. Using the fact that a equilibrium 
the two-body distribution function factors into a product of kinetic and 
configurational parts for two-dimensional fluids, we find that Eq. (7) 
reduces at equilibrium to 

S = l - k s l n (  P ~-kBPCdr12g(r12)lng(r12)+... (8) 
N k2~mkB T/ 2 3 

where g(r12 ) is the equilibrium radial distribution function. Equation (8) 
has been tested using experimental radial distribution function data by 
WallaceJ s) He found that in liquid sodium at 7 K above the melting 
temperature that the Green expansion for the entropy, terminated at the 
pair level, was accurate to within estimated statistical uncertainties of 2 %. 
As far as I know, the Green expansion has never been tested against 
computer simulation data either at or away from equilibrium. 

I used a simulation of 32 soft disk to test Eq. (8) truncated at the pair 
level. The soft-disk intermolecular potential function r 12 was 
used. All units were expressed in dimensionless from by expressing all 
quantities in terms of the potential parameters a, e, and the particle mass 
m. The potential was trincated at a reduced separation r*=r/~= 1.5. 
Table I shows some of the equilibrium data gathered for the soft-disk fluid. 
All units are expressed in reduced form. Each state point was generated 
from a 10 million-timestep simulation run using a reduced timestep of 
0.002. The energy per particle is denoted e, and the total one- and two- 
body entropy per particle is denoted by s. The entropy was calculated by 
forming histograms for both g(r) and f(p).  These numerical approxima- 
tions to the distribution functions were then integrated numerically. The 
radial distribution function was calculated over the minimum image cell to 
include exactly the long-ranged contributions arising from the fact that the 
integral of g(r)-  1 is related to the compressibility in the well-known 
fashion. r The equipartition temperature corrected for O(1/N) factors is 
denoted T~. The thermodynamic temperature Tth was calculated from 
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Table I. Equilibrium Modurate Density Data" 
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p e s Tk Tth 

0.6 1.921 3.200 
0.6 2,134 3.341 1.552 1.614 
0.6 2.347 3.464 

0.625 1.921 3.034 
0.625 2.134 3.176 1.499 I. 500 
0.625 2.347 3.318 

0.65 1.921 2.889 
0.65 2.134 3.044 1.445 1.454 
0.65 2.347 3.182 

0.675 1.921 2.754 
0.675 2.134 2.919 1.306 1.374 
0.675 2.347 3.064 

0.7 1.921 2.889 
0.7 2.134 3.044 1.326 1.291 
0.7 2.347 3.182 

"The  uncertainties in the entropies are _+0.005. 

Eq. (8) using the thermodynamic relation Tth = (ge/Os)v. For each separate 
density the three state points were used to form a simple finite difference 
approximation for the midpoint derivative. 

I did not use the analytical expression for the kinetic contribution to 
the entropy, but rather this contribution was calculated from simulation 
data by histogramming the observed particle velocities and numerically 
integrating the single-particle contribution. This numerical estimate for the 
kinetic contribution to the entropy was then compared to the theoretical 
expression (basically the Boltzmann H-function) and agreement was 
observed within the estimated statistical uncertainties. 

By using the entropies calculated at p = 0.6, 0.7 to form a finite dif- 
ference approximation to the derivative Os/Op 1, one can compare the 
pressure calculated from the relation p = T(c~S/OV)e with the virial expres- 
sion calculated directly from the simulation. The virial pressure at 
e = 2.134, p = 0.65, is 3.85, whereas the pressure calculated exclusively by 
numerical differentiation of the entropy is 3.72 + 0.15. The largest source of 
error in these calculations is likely to be in the finite difference approxima- 
tion for the various partial derivatives. 
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3. THE  N O N E Q U I L I B R I U M  E N T R O P Y  

Away from equilibrium the main difficulty in using even the first two 
terms in Eq. (7) is the dimensionality of the required histograms. The non- 
equilibrium pair distribution function does not factorize into a product of 
kinetic and configurational parts. One has to deal with the full function of 
six variables for a translationally invariant two-dimensional fluid. It may be 
possible to expand this distribution in an appropriate set of orthogonal 
polynomials. In this work I decided to reduce the density to p ~ 0.1, where 
the configurational contributions to the entropy can largely be ignored. I 
evaluated the entropy of the same system of 32 soft disk as above, but now 
the system was subject to an isoenergetic shear flow. The equations of 
motion used were the SLLOD equations of motion, which are known to be 
exact for low-Reynolds-number shear flows,/9) 

/li = Pi + iTYi (9) 

Pi = Fi - iypyi - ~Pi 

In these equations ? = #ux/Oy is the strain rate and the momenta pi are 
peculiar with respect to the stable low-Reynolds-number streaming velocity 
profile. The term ~pi is the Gaussian thermostat. In this simulation it 
was used to maintain a constant thermodynamic internal energy 
Ho - Z P2/2m + q~. The internal energy is a constant of the motion if the 
multiplier ~ takes the form (~~ 

P~y~V 
= ( l o )  

Y~ (p~/m) 

where Pxy is the xy element of the pressure tensor. These equations 
combined with Lees-Edwards shearing periodic boundary conditions (11) 
enable us to simulate isoenergetic shear flow. (12) 

To check the validity of the assumption that at these low densities the 
configurational parts of the entropy may be ignored, I performed some 
checks on the equilibrium thermodynamic properties of this system. 
Table II shows the thermodynamic temperature computed using a finite 
difference approximation to the derivative Oe/~s (e = Ho/N, s = S/N). It also 
shows the kinetic temperature computed using the equipartition expression. 
At equilibrium, the data at a reduced density of 0.1 predict a thermo- 
dynamic temperature which is in statistical agreement with the kinetic 
temperature, 2.12 _+ 0.04 as against 2.17, respectively. The equilibrium data 
at e = 2.t34, p = 0.1, give a thermodynamic pressure of 0.22, in reasonably 
good agreement with the virial pressure (including both kinetic and 
configurational components) of 0.24. The disagreement between the thermo- 
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dynamic and the kinetic expressions for both the temperature and the 
pressure arises from two causes: first, at this low density, we are ignoring 
the configurational contributions to the entropy, and second, we are 
approximating the required partial differentials by centered, finite difference 
expressions. 

Figure 2 shows the analogue of Fig. 1 for a 32-particle system under 
shear. The nonequilibrium pair distribution function is free of the 
singularities apparent  in the two-particle system. It  is smooth because for 
one- and two-particle distributions in systems of many particles, one 
averages over all possible positions and momenta  for the other N - 2  
particles. This averaging "washes out" all the fine structure. These distribu- 
tions, even at very high strain rates, are no t  fractal. If the Green expansion 
converges rapidly, we will clearly arrive at a finite value for the entropy. 

Table II  gives the computed kinetic contribution to the entropy as a 
function of energy, density, and strain rate. At low densities the increased 
mean free paths of particles relative to the corresponding situation in dense 
fluids means that considerably longer simulation runs are required to 
achieve an accuracy comparable to that for dense fluids. The data given in 
Table II  are taken from 15 million-timestep simulation runs. Away from 
equilibrium the strain rate tends to increase the "mixing" of trajectories in 
phase space, so that the errors actually decrease as the strain rate is 
increased. 

Fig. 2. The pair distribution function for the 32-particle soft-disk fluid at a relatively high 
reduced strain rate of 2.0. The reduced density and total energy per particle are 0.1 and 1.921, 
respectively. The run length is 24 million timesteps. The distribution is, as far as can be told 
from the simulation data, completely smooth. In spite of the high anisotropy of this distribu- 
tion, the configurational contriduction to the system entropy is only about 0.4%. 
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For a given energy and density, the entropy is observed to be a 
monotonic decreasing function of the strain rate. As expected from ther- 
modynamics, the equilibrium state has the maximum entropy. Although 
there is no generally agreed upon framework for thermodynamics far from 
equilibrium, it is clear that the entropy can be written as a function S = 
S(N, V, E, 7)- Defining Tth as (OE/OS)v,e, Pth as T((3S/~V)E,7 and ~th as 
-T(~S/~7)e, v, we can write 

dE= Tth d S -  Pth dV+ ~th d7 (11) 

Some years ago Evans and Hanley (13) proposed Eq. (11) as a generalized 
Gibbs relation; however, at that time there was no way of directly 
computing the entropy or any of the free energies. This forced Evans and 
Hanley to postulate that the thermodynamic temperature was equal to the 
equipartition or kinetic temperature T~-2K/(dNk~) for systems in d 
dimensions. For reasons of convenience the kinetic temperature has been 
universally used by computer simulators in studies of nonequilibrium 
systems. (14) 

Evans and Hanley (13) observed that away from equilibrium, although 
the pressure tensor is anisotropic, the thermodynamic pressure must be 
independent of the manner in which a virtual volume change is performed. 
The thermodynamic pressure must therefore be a scalar. They assumed 
that the thermodynamic pressure would be equal to "the simplest 
scalar invariant of the pressure tensor" that was also consistent with 
equilibrium thermodynamics. In two-dimensional systems they assumed 
P = (Pxx + Pyy)/2. 

Since we can now calculate the coarse-grained Gibbs entropy directly, 
we can check the correctness of these postulates. We only assume that the 
internal energy is given by the sum of the peculiar kinetic energy and the 
potential energy, that we know the system volume and strain rate, and that 
the thermodynamic entropy is equal to the coarse-grained Gibbs entropy, 
which at low densities can be approximated by the first term of Eq. (7). 
Table II shows a comparison of kinetic and thermodynamic temperatures 
for the 32-particle soft-disk system. 

As has been known for some time,~176 (OTk/~7)v,e is negative, leading 
to a decrease in the kinetic temperature with increasing strain rate. For  this 
low-density system the effect is far smaller than has been seen for 
moderately dense systems. (1~ At a density of 0.1 the kinetic temperature 
drops by 0.3 % as the shear rate is increased to unity. The precision of the 
kinetic temperature for these runs is about 0.01%. The thermodynamic 
temperature also decreases as the strain rate is increased, but in a far more 
dramatic fashion. It decreases by 10% over the same range of strain rates. 
The results clearly show that away from equilibrium the thermodynamic 
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Table II. Low-Dens i ty  Data ~ 

P 7 e s Tk Tth 

0.075 0.0 2.134 6.213 

0.1 0.0 1.921 5.812 
0.1 0.0 2.134 5.917(27) 2.175 2.12(6) 
0.1 0.0 2.346 6.013 

0.125 0.0 2.134 5.686 

0.075 0.5 1.921 5.744 
0.075 0.5 2.134 5.852 2.190 2.088 
0.075 0.5 2.347 5.948 

0.1 0.5 1.921 5.539 
0.1 0.5 2.134 5.653 2.171 2.048 
0.1 0.5 2.346 5.747 

0.125 0.5 1.921 5.369 
0.125 0.5 2.134 5.478 2.153 2.088 
0.125 0.5 2.347 5.573 

0.075 1.0 1.921 5.380 
0.075 1.0 2.134 5.499 2.188 1.902 
0.075 1.0 2.347 5.604 

0.1 1.0 1.921 5.275 
0.1 1.0 2.134 5.392 2.169 1.963 
0.1 1.0 2.346 5.492 

0.125 1.0 1.921 5.157 
0.125 1.0 2.134 5.267 2.149 2.019 
0.125 1.0 2.347 5.368 

a Away from equilibrium the uncertainties in the entropy are _+0.005. 

Table III. Nonequi l ibr ium Pressure a 

7 Pth Ptr Pl P2 

0.0 0.215(7) 0.244 0.244 0.244 
0.5 0.145 0.245 0.361 0.130 
1.0 0.085 0.247 0.397 0.096 

a e = 2.134, p = 0.1. 
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temperature is smaller than the kinetic or equipartition temperature. As the 
strain rate increases, the discrepancy grows larger. 

Using the simulation data at e=  2.134, one can estimate the thermo- 
dynamic pressure as a function of strain rate. Table III shows the finite 
difference approximation for the thermodynamic pressure Pth, the 
"hydrostatic pressure" ptr= (P~x+Pyy)/2, and the largest and smallest 
eigenvalues of the pressure tensor Pl and P2, respectively. As expected, the 
hydrostatic pressure increases with shear rate. This effect is very slight at 
these low densities. This effect is known as shear dilatancy. The thermo- 
dynamic pressure shows a much larger effect, but in decreases as the 
strain rate is increased. In an effort to give a mechanical interpretation to 
the thermodynamic pressure, I calculated the two eigenvalues of the 
pressure tensor. Away from equilibrium, the diagonal elements of the 
pressure tensor differ from one another and from their equilibrium values; 
these are termed normal stress effects. The eigenvalues are influenced by all 
the elements of the pressure tensor, including the shear stress. One of the 
eigenvalues increases with strain rate, while the other decreases, and within 
statistical uncertainties the latter is equal to the thermodynamic pressure. 

I conjecture that the thermodynamic pressure is equal to the minimum 
eigenvalue of the pressure tensor, Pth = P2. This relation is exact at equi- 

. . . .  i . . . .  | . . . .  i . . . .  I - 

0.5 1.0 1.5 2.0 

6.0 

5.8 

5.6 

5.4 

5.2 

5.0 

4.8 
0.0 

Fig. 3. The kinetic contribution to the system entropy as a function of strain rate. The 
system density is 0.1 and the energy per particle is 2.134. Within the accuracy of the data the 
entropy is essentially a linear function of strain rate. The derivative of entropy with respect 
to strain rate gives ~/T. The ( is positive, but decreases with strain rate, mostly due to the 
decrease in the thermodynamic temperature with increasing strain rate. 
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librium and is in accord with the numerical results. It is also clear that if 
the entropy is related to the minimum reversible work required to accom- 
plish a virtual volume change in a nonequilibrium steady-state system, then 
P2 dV is the minimum pV work that is possible. If one imagines carrying 
out a virtual volume change by moving walls inclined at arbitrary angles 
with respect to the shear plane, then the minimum virtual p V work (mini- 
mized over all possible inciinations of the walls) will be P2 dV. 

Figure 3 shows the kinetic contribution to the entropy as a function 
of strain rate for the 32-particle system at an energy e = 2.134 and a density 
p = 0.1. The entropy seems to be a linear function of strain rate for the 
range of strain rates covered by the simulations. Combining these results 
with those from Table II allows us to compute ~th as a function of strain 
rate. For  7 = 0.0, 0.5, and 1.0 one finds that ~th/N= 1.22, 1.08, and 0.91, 
respectively. Most of the decrease in ~ is due to the decrease in the thermo- 
dynamic temperature with increasing strain rate. I have assumed that 
asymptotically s is linear in strain rate as the strain rate tends to zero. It 
is always possible that at strain rates which are too small for us simulate, 
this linear dependence gives way to a quadratic variation. This would not 
be inconsistent with the present observations and would lead to ~ = 0, at 
equilibrium. 

4. CONCLUSION 

Although these calculations are restricted to the low-density gas 
regime, the results suggest that a sensible definition for the nonequilibrium 
entropy can be given. The definition based on Eq. (7) avoids the divergen- 
ces inherent in the fine-grained entropy due to the contraction of the non- 
equilibrium phase space. At low densities the present entropy reduces to 
the Boltzmann entropy given by the Boltzmann H-function. The present 
entropy is, for states of a specified energy and density, a maximum at 
equilibrium. 

Defining a temperature on the basis of this entropy indicates that far 
from equilibrium there is no reason to expect that the equipartition or 
kinetic temperature is equal to the thermodynamic temperature. Similarly, 
there seems to be no reason to expect that the average of the diagonal 
elements of the pressure tensor will be equal to the thermodynamic 
pressure far from equilibrium. The concept of minimum reversible virtual 
work, together with the present numerical results, suggests that the thermo- 
dynamic pressure is instead equal to the minimum eigenvalue of the 
pressure tensor. 

One can form an exact fluctuation expression for our nonequilibrium 
entropy. In the low-density regime one can use the exact transient time 
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correlation function formalism (16) to show that the single-particle velocity 
distribution is related to transient correlations of the equilibrium stress, 
-Pxy(O) and the transient probability that at a time s, a particle had a 
momentum p: 

As(p)= f~q( p) I I -  ~TV fo ds Pxy(O) f(s; P)] (12) 

In this equation fss is the steady-state single-particle distribution function. 
It is equal to the limit as s ~ ov o f f ( s ;  p). Here feq is the initial equilibrium 
Maxwell-Boltzmann distribution with Boltzmann factor fl = I/kB T [note: 
f ( s = 0 ;  p)=feq]"  Equation (12) may be substituted into the first term of 
(7) to give an exact expression for the low-density entropy. It can then be 
used to compute various interrelationships between entropy derivatives. 

In future work I plan to examine whether the entropy as defined here 
is a local maximum in nonequilibrium steady states. If this can be satis- 
factorily demonstrated, one will have for the first time a fundamental basis 
for a generalized thermodynamics of steady states far from equilibrium. 
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